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Ising Models on Hyperbolic Graphs II
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We consider Ising models with ferromagnetic interactions and zero external
magnetic field on the hyperbolic graph H(v, f ), where v is the number of
neighbors of each vertex and f is the number of sides of each face. Let Tc be the
critical temperature and T $c=sup[T�Tc : & f=(&++&&)�2], where & f is the
free boundary condition (b.c.) Gibbs state, &+ is the plus b.c. Gibbs state and
&& is the minus b.c. Gibbs state. We prove that if the hyperbolic graph is self-
dual (i.e., v= f ) or if v is sufficiently large (how large depends on f, e.g., v�35
suffices for any f �3 and v�17 suffices for any f �17) then 0<T $c<Tc , in con-
trast with that T $c=Tc for Ising models on the hypercubic lattice Zd with d�2,
a result due to Lebowitz.(22) While whenever T<T $c , & f=(&++&&)�2. The last
result is an improvement in comparison with the analogous statement in refs. 28
and 33, in which it was only proved that & f=(&++&&)�2 when T<<T $c and it
remains to show in both papers that & f=(&++&&)�2 whenever T<T $c . There-
fore T $c and Tc divide [0, �] into three intervals: [0, T $c), (T $c , Tc), and
(Tc , �] in which &+{&& but & f=(&++&&)�2, &+{&& and & f{(&++&&)�2,
and &+=&&, respectively.
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1. INTRODUCTION

The study of Ising models and percolation has been mainly focused on the
finite-dimensional lattice Zd during the past half a century. However, in
recent years increasing attention has been dedicated to the study of these
models on other graphs. A sample of these efforts can be found in the
papers(3�7, 15, 17, 19�21, 25, 28�30, 32, 33) and the references therein. The graphs
considered in these papers have the property that they are infinite dimen-
sional in the sense that the graphs grow exponentially fast, but they are not
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trees, i.e., they have loops. Series and Sinai(32) studied Ising models on
certain hyperbolic graphs and proved that in low temperature there are
uncountably many mutually singular Gibbs states which, they believed, are
extremal. Using the methods of high- and low-temperature expansions
Rietman et al.(29) evaluated the critical temperature and the critical
exponents ; and #, associated with the magnetization and the susceptibility
respectively. Not surprisingly their numerical results show that ; and # take
their mean-field values 1�2 and 1. What is surprising is that their numerical
results indicate that for self-dual hyperbolic graphs there may be a second
critical temperature; but the low-temperature expansions of the magnetiza-
tion and susceptibility do not show this singularity. In refs. 28 and 33 it is
proved that Ising models on certain nonamenable graphs exhibit multiple
phase transitions; the graph considered in ref. 28 is transitive but not
planar and the one in ref. 33 is planar but not transitive.

The motivation for this trend of studying the models on general
graphs is at least twofold. On one hand, it is clear from the results in the
papers quoted above that on graphs different from the commonly studied
square lattices and homogeneous trees there is new mathematical structure
to be found. On the other hand the techniques and results obtained from
the study of the models on more general graphs in some instances have led
to results which were not yet available for the most studied particular
graphs.

In this paper we study Ising models on hyperbolic graphs considered
in ref. 29. These graphs are planar and transitive. We will show that the
models have a second phase transition in the sense to be explained below.
The hyperbolic graphs can be briefly described as follows (for their detailed
constructions see Section 2 of ref. 29). Each vertex of the graph has the
same number of neighbors. The graphs, with equilateral faces, can be
embedded in a two-dimensional space with constant curvature. The space
is the sphere S2, the Euclidean plane R2 or the hyperbolic plane H2 respec-
tively when the curvature is positive, zero or negative respectively. The
graphs can be characterized by two integers, both �3: v, the number of
neighbors of each vertex; and f, the number of sides of each face, and
denoted as (v, f ). They can be embedded in S2, R2 or H2 respectively when
the quantity (v&2)( f&2) is smaller than, equal to or larger than four
respectively. The (five) graphs which can be embedded in the sphere have
only finite number of vertices (e.g., the (3, 3) lattice is a tetrahedron). On
R2 there are three (infinite) graphs: triangular (6, 3), square (4, 4) and
hexagonal (3, 6). Ising systems on these lattices have received intensive
study. Among the celebrated results is that for Ising models on Z2, all
Gibbs states are translation invariant and are convex combinations of the
(+) boundary condition (b.c.) state &+ and the (&) b.c. state &&, proved
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independently by Aizenman(1) and Higuchi.(16) When embedded in the
hyperbolic plane, there are infinitely many choices of (v, f ). We denote
these graphs by H(v, f ) when (v&2)( f&2)>4. We will occasionally write
H for H(v, f ) for simplicity. As in the case of the three graphs embedded
in R2, the dual graph of H(v, f ) is the graph H( f, v). The hyperbolic
graph H(5, 5), which is self-dual, is shown in Fig. 1 as an example.

Before we state the results for Ising models on the hyperbolic graphs,
we first recall some fundamental results for Ising models on Zd. On Z2, as
mentioned above, there is no non-translation-invariant Gibbs state and &+

and && are the only extremal Gibbs states. While on Zd with d�3,
Dobrushin(9) proved that for (very) low temperature there exist non-trans-
lation-invariant Gibbs states, which of course are not combinations of &+

and &&. Meanwhile, it is expected, although not completely proved, that
&+ and && are the only translation invariant extremal Gibbs states and any
other translation invariant Gibbs state is a combination of them��this has
been proved for all low temperatures by Gallavotti and Miracle-Sole(13)

and for all but countably many temperatures below the critical temperature
Tc by Lebowitz, (22) where Tc is defined, as usual, as the supremum of the

Fig. 1. An example of the hyperbolic graph H(5, 5) drawn on the unit disk.
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temperatures at which the spontaneous magnetization at the origin is
positive. In particular, the Gibbs state with free b.c., & f, which is translation
invariant, is equal to (&++&&)�2 for all but countably many temperatures.

Returning to Ising models on the hyperbolic graphs, it is known by
the work of Series and Sinai(32) that there are uncountably many extremal
Gibbs states for T (well) below Tc , in contrast with the widely believed
view (but not rigorously proved) that the total number of extremal Gibbs
states (translation invariant and non-translation-invariant) is countable for
Ising models on Zd with d�3. In this paper we prove that if the hyperbolic
graph H(v, f ) is self-dual, i.e., v= f, or if v is sufficiently large (how large
depends on f , e.g., v�35 suffices for any f �3 and v�17 suffices for any
f �17), then there exists a second critical temperature T $c<Tc such that for
T between T $c and Tc , & f{(&++&&)�2��hence &+ and && are not the only
translation invariant extremal Gibbs states (in contrast with that &+ and
&& are the only translation invariant extremal Gibbs states for Ising models
on Zd with d�3); while whenever T<T $c , & f=(&++&&)�2. We remark
that similar results were obtained in ref. 28 for a transitive but non-planar
graph and in ref. 33 for a planar but non-transitive graph. However in both
papers it was only shown that & f=(&++&&)�2 for T<<T $c , i.e., for T suf-
ficiently below T $c. It remains to show in both papers that & f=(&++&&)�2
whenever T<T $c.

We expect that the results are true on any H(v, f ) as long as
(v&2)( f&2)>4, but at the present we need to assume that H(v, f )
is self-dual or v is sufficiently large to guarantee that T $c is strictly less
than Tc . The argument in this paper also applies to q-state Potts models.
But it requires v to be larger to guarantee that T $c is strictly less than Tc

when q>2. We conclude the introduction with some open problems: For
T between T $c and Tc how many translation invariant extremal Gibbs
states are there and what are they? Is & f extremal? For T below T $c are &+

and && the only translation invariant extremal Gibbs states?

2. STATEMENT OF RESULTS

Let V(H) and E(H) be the vertex (site) set and edge (bond) set of H

respectively. The ferromagnetic Ising model on the graph H is described by
the spin random variables [_x : x # V(H)]. Each _x takes on the values
\1. The interaction between the spins is described by the Hamiltonian:

H=&1
2; :

[x, y]

_x_y

in which the sum is over nearest neighbor bonds [x, y], and ;=1�T�0
is the inverse temperature. Let &+

; (respectively &&
; or & f

;) denote the Gibbs
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state associated with the Hamiltonian H with (+) (respectively (&), or
free) b.c. Let ( } )

* , ; denote the expectation with respect to &*; , where
V=+, &, or f. When it does not cause confusion, we will drop the sub-
script ; in &*; and ( } )

* , ; . Let o be a distinguished site of V(H) called the
origin. The infinite volume quantities of primary interest to us are the
spontaneous magnetization

M(;)#Mo(;)=(_o)+, ; (2.1)

and the two-point correlation function (_x_y)
* , ; with V b.c.

Before stating the results of Ising models on H(v, f ), we first review
a result of independent (bond) percolation on H(v, f ). Let p be the prob-
ability that a bond is open and Pp be the resulting probability measure on
[0, 1]E(H(v, f )). It is known(5, 27) that for any p # [0, 1] the number of
infinite open clusters is a.s. a constant taking from the values 0, 1, or �.
Define

pc= pc(H(v, f ))

=inf[ p : Pp (there is an infinite open cluster on H(v, f ))=1]

pu= pu(H(v, f ))

=inf[ p : Pp (there is a unique infinite open cluster on H(v, f ))=1]

It is obvious that pc�pu . Benjamini and Schramm(6) proved that
0<pc<pu<1 for independent bond percolation on any planar transitive
nonamenable graph with one end, in particular on H(v, f ).

Proposition 1. For Ising models on the hyperbolic graph H(v, f ),

(a) If ;<ln(1�(1& pc)), then M(;)=0 and consequently the Gibbs
state is unique.

(b) If ;>ln((1+ pc)�(1& pc)), then M(;)>0 and consequently
there are more than one Gibbs state.

(c) If ;<ln(1�(1& pu)) and also M(;)>0, then & f{(&++&&)�2.

(d) If ;>ln((1+ pu)�(1& pu)), then & f=(&++&&)�2.

Noticing that M(;) is a nondecreasing function of ;, define

;c=inf[;>0 : M(;)>0]

;$c=inf[;�;c : & f
;=(&+

; +&&
; )�2]
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As mentioned in the introduction, it is known(22) that for Ising models
on Zd, & f=(&++&&)�2 for all but countably many ;. Therefore ;c=;$c for
Ising models on Zd with d�2. However for Ising models on H(v, f ) we
have the following

Corollary 1. For Ising models on the hyperbolic graph H(v, f ),

(a) Whenever ;>;$c , & f
;=(&+

; +&&
; )�2.

(b) If H(v, f ) is self-dual, i.e., v= f, or if v is sufficiently large, then
0<;c<;$c<�.

3. PROOFS

We first state a comparison lemma between FK random cluster
models and independent percolation. FK random cluster models are
described by probability measures on the configuration of bond variables,
n=[nb], which take the value 1��meaning the bond b=[x, y] is open,
or 0��meaning b is closed. For a finite 4/H, the free b.c. measure + f

4, q, p

has bond-configuration probabilities proportional to

qC(n)pO(n)(1& p) |4|&O(n)

where C(n) denotes the number of distinct clusters defined by the bond
configuration n, |4| the number of bonds in 4 and O(n) the number of
open bonds in 4. The ``wired'' b.c. measure +w

4, q, p is defined similarly
except C(n) is determined by regarding all the sites in 4c, as well as those
sites in 4 which are connected to 4c by an open path, as connected. For
q�1, infinite volume measures + f

q, p and +w
q, p exist.(2, 11, 14) The q=1 case

is just the independent percolation model, where the probability measure
is denoted by Pp . We will simply write +p* for +*2, p , where V= f or w. Let
p=1&e&;, then Ising models and FK random cluster models are related
by the following identities:

M(;)#(_o) +, ;=+w
p (o W �) (3.1)

(_x_y) f, ;=+ f
p(x W y) (3.2)

where x W y means that x and y are in the same open cluster, and o W �
means that the cluster of o is infinite. (See ref. 2 for more details.)

The FK random cluster model is related to independent percolation
by Fortuin's comparison inequalities stated in Lemma 1 below. For a proof
of these inequalities see refs. 2, 11, and 14. For two probability measures
+ and +$, we write +P+$ if +(A)�+$(A) for every increasing event A,
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where A is called an increasing event if [nb] # A implies [n$b] # A whenever
nb�n$b for all bond b.

Lemma 1. For q�1, let +*q, p be a free or wired b.c. measure of the
FK random cluster model in H and let Pp be the corresponding indepen-
dent percolation measure. Then

+*q, pPPp (3.3)

and

+*q, ppPp$ (3.4)

where p$= p�( p+(1& p) q).

Although the lemma is stated for any q�1, we only need the q=2
case to prove the results for Ising models.

Proof of Proposition 1. (a) Recall that p=1&e&;. If ;<
ln(1�(1& pc)), then p<pc . By (3.1) and (3.3)

M(;)=+w
p (o W �)�Pp(o W �)=0

(b) If ;>ln((1+ pc)�(1& pc)), then p$#p�( p+2(1& p))>pc . By
(3.4)

M(;)=+w
p (o W �)�Pp$(o W �)>0

(c) If ;<ln(1�(1& pu) then p<pu . By (3.2), (3.3), and Theorem 4.1
of ref. 25, there exists two sequences of sites xn , yn # V(H(v, f )), n=1, 2,...,
such that

(_xn
_yn

) f, ;=+ f
p(xn W yn)�Pp(xn W yn) � 0 (3.5)

as n � �. On the other hand, if M(;)>0, then by GKS inequalities,

(_x_y) \, ;�M(;)2>0 (3.6)

for any sites x and y. Equations (3.5) and (3.6) imply that & f{(&++&&)�2.

(d) We first show that for independent percolation on H(v, f ), when
p>pu the unique infinite open cluster ``traps'' H(v, f ) a.s. More precisely,
if we color each site in the unique infinite open (bond-) cluster red and
color the remaining sites of V(H(v, f )) white, then all of the white site-
clusters are finite a.s. Consider independent percolation on the dual graph
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H� (v, f )(=H( f, v)). Declare a bond of H� (v, f ) open if the corresponding
bond of H(v, f ) is closed. If the unique infinite open cluster in H(v, f )
does not trap H(v, f ), then there exists an infinite open cluster in H� (v, f )
and hence 1& p�pc(H� (v, f )). On the other hand we know from Theorem 3.8
of ref. 6 that pc(H� (v, f ))+ pu(H(v, f ))=1. Therefore p�pu(H(v, f )),
a contradiction to the assumption that p>pu .

Let A be the event that there exists a unique infinite open cluster in
H(v, f ) and it traps H(v, f ). Then A is an increasing event, and Pp(A)=1
when p>pu by the preceding argument. If ;>ln((1+ pu)�(1& pu)), then
p$= p�( p+2(1& p))>pu . By (3.4)

+ f
p(A)�Pp$(A)=1 (3.7)

We now outline the proof that (3.7) implies & f=(&++&&)�2. The detailed
proof is similar to the proof of Proposition 2.1.5 of ref. 28, so it is omitted.
From the FK representations of Ising models, the free b.c. Ising spin
configurations can be generated as follows. Given a bond configuration
according to + f

p , assign spin values independently and symmetrically to
each bond cluster, i.e., assign with probability 1�2 one of the two values,
+1 or &1, to all sites which belong to the same bond cluster. So all sites
in a given bond cluster have the same value and the value is either +1 or
&1 with probability 1�2. By (3.7), there exists a.s. either a unique infinite
(+) site cluster or a unique infinite (&) site cluster which traps H(v, f );
each case occurs with probability 1�2. The unique infinite (+) (or (&))
site cluster which traps H(v, f ) serves as a (+) (or (&)) b.c. So & f=
(&++&&)�2. K

To prove the corollary we define the isoperimetric constant of a graph
H as follows. Let K/V(H) be a subset of sites and

�K=[b # E(H) : one and only one end-point of b is in K ]

be the boundary bond set of K. Denote by |A| the cardinality number
of A. The isoperimetric constant of H is defined by

i(H)=inf { |�K |
|K |

: K/V(H) is finite=
Proof of Corollary 1. (a) From the definition of ;$c , for any ;>;$c

(�;c), there exists ;0 # (;$c , ;) such that & f
;0

=(&+
;0

+&&
;0

)�2. So

(_x _y) f , ;0
=((_x_y) +, ;0

+(_x _y) &, ;0
)�2�M(;0)2>0 (3.8)
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for any x and y of V(H), where the first inequality uses GKS inequalities.
Let p0=1&e&;0. Then by (3.2) and (3.8)

+ f
p0

(x W y)=(_x_y) f, ;0
�M(;0)2>0 (3.9)

for any x and y of V(H). Set p=1&e&;, then p>p0 by the choice of ;0 .
By the stochastic monotonicity of + f

p and (3.9)

+ f
p(x W y)�+ f

p0
(x W y)�M(;0)2>0 (3.10)

for any x and y of V(H). From Theorem 4.1 of ref. 25, (3.10) implies that

+ f
p (there exists a unique infinite open cluster in H)=1 (3.11)

As in the proof of part (d) of the proposition, in order to show & f
;=

(&+
; +&&

; )�2, one only needs to show that

+ f
p (there exists a unique infinite open cluster in H and the

infinite open cluster traps H)=1 (3.12)

From Theorem 3.7 of ref. 6, for independent bond percolation on H, if
there exists a unique infinite open cluster in H with probability one, then,
with probability one, there is no infinite open cluster in the dual graph
H� (v, f ). The proof of this theorem can be extended word by word to any
percolation process on H which is invariant under graph automorphisms
and which has the ``finite energy'' property (see refs. 8 and 27 for the defini-
tion and discussion of the finite energy property). In particular, + f

p is such
a percolation process. So (3.11) implies that

+ f
p (there is no infinite open cluster in H� (v, f ))=1 (3.13)

On the other hand, it is not hard to see that geometrically if the unique
infinite open cluster in H does not trap H, then there exists some infinite
open cluster in H� (v, f ). This observation, together with (3.11) and (3.13),
imply (3.12). This completes the proof of part (a).

(b) From parts (a) and (b) of the proposition,

0<ln(1�(1& pc))�;c�ln((1+ pc)�(1& pc))

If ln((1+ pc)�(1& pc))<ln(1�(1& pu)), then

;c�ln((1+ pc)�(1& pc))<ln(1�(1& pu))�;$c�ln((1+ pu)�(1& pu))<�
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where the third and the fourth inequality is due to part (c) and part (d) of
the proposition respectively. So we only need to show that ln((1+ pc)�
(1& pc))<ln(1�(1& pu)), or equivalently that 2pc �(1+ pc)<pu .

If H(v, f ) is self-dual, then (recall that pc(H� (v, f ))+ pu(H(v, f ))
=1) we have that pu(H(v, f ))=1& pc(H(v, f )). So we only need to show
that 2pc �(1+ pc)<1& pc , or pc<- 2&1. It is known from ref. 5 that

pc�1�(i(H(v, f ))+1) (3.14)

So it is sufficient to show that i(H(v, f ))>- 2 for v= f (�5). It is
calculated in refs. 10 and 16 that i(H(v, f ))�- 5 when v= f �5. This
completes the self-dual case.

If H(v, f )is not self-dual, define the spectral radius of H(v, f ) by

\(H(v, f ))=lim sup
n � �

( pn(x, y))1�n

which does not depend on x or y, where pn(x, y) denote the n-step trans-
ition probability between sites x and y, for the simple random walk on
H(v, f ). From Theorem 4 of ref. 5, 1�(v\(H(v, f )))�pu , where recall v is
the number of neighbors of each site. So it is sufficient to show that
2v\(H(v, f ))( pc �(1+ pc))<1. It is known from Theorem 2 of ref. 5 that
pc<1�(i(H(v, f ))+1). From Theorem 6 of Chapter 15 of ref. 24 or
Theorem 2.1 of ref. 26, v\(H(v, f ))�- v2&i 2(H(v, f )) (The author
learned this inequality and its application here from an argument of
R. Schonmann reported in ref. 7). So it is sufficient to show that

2 - v2&i 2(H(v, f ))
1�(i(H(v, f ))+1)

1+1�(i(H(v, f ))+1)
<1

or

i(H(v, f ))> 2
5 (- 5v2&4&1) (3.15)

It is calculated in ref. 16 that i(H(v, f ))=(v&2)- 1&4�((v&2)( f&2)),
which is greater than the right hand side of (3.15) when v is sufficiently
large for any f �3. This completes the non-self-dual case. K

During the revision of this paper, the author learned that Ha� ggstro� m,
Jonasson, and Lyons(16) and Schonmann(31) have proved, among many
other results, similar result in their recent preprints.
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